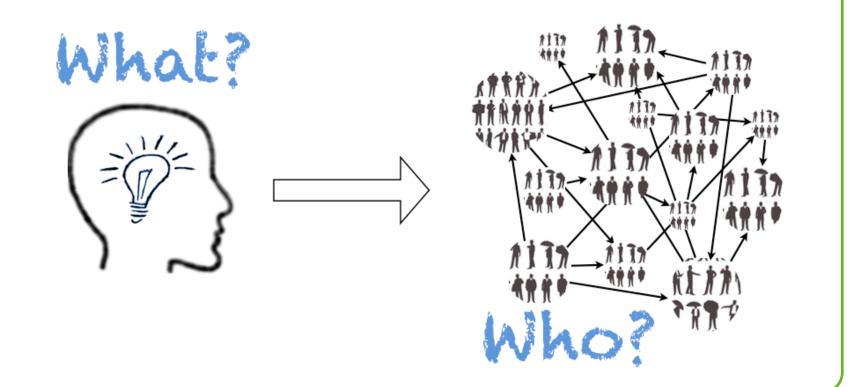
Author Profiling in Social Media: Identifying Information about Gender, Age, Emotions and beyond*

Francisco Manuel Rangel Pardo – @kicorangel

CTO Autoritas / PhD Student at UPV

Strategic Intelligence, from Know-How to Know-Who

"If you know the enemy and know yourself, you need not fear the result of hundred battles. If you know yourself but not the enemy, for every victory gained you will also suffer a defeat. If you know neither the enemy nor yourself, you will sucumb in every battle"



Demographics

- Organization of PAN-AP 2013 Task at Valencia
 <u>http://www.uni-weimar.de/medien/webis/research/events/pan-13/pan13-web/author-profiling.htm</u>
- ✓ Objective -> Identify Age & Gender
 - ✓ 10s (13-17), 20s (23-27), 30s (33-47)
 - ✓ Male / female
 - ✓ Two languages (EN / ES)
- ✓ Dataset -> Social media, some challenges
 - \checkmark Large dataset -> big data?

Emotions

Sun Tzu

- ✓ Objective -> Identify Eckman's 6 basic emotions
- ✓ Dataset ->
 - ✓ 1,200 comments from Facebook
 - ✓ 3 different themes: politics, football, public people
 - ✓ Manually labeled by 3 annotators

Dataset			
	MALE	FEMALE	
POLITICS	200	200	

- ✓ Auto-labeled data
- ✓ Auto-generated content -> robots, ads...
- ✓ High variety of themes
- \checkmark Introduction of chatlines from pedophiles

LANG	AGE	NUM. OF AUTHORS
EN	10s	8,600 / 740 / 888
[20s	42,828 / 3,840 / 4,608
	30s	66,800 / 6,020 / 7,224
ES	10s	1,250 / 120 / 144
	20s	21,300 / 1,920 / 2,304
	30s	15,400 / 1,360 / 1,632

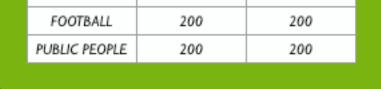
- ✓ Methodology -> Machine learning, high variety of features
 - ✓ Stylometrics, readability, content, Isa...

✓ Results ->

Early	bird	resu	llts	
TEAM	ENGLISH		SPANISH	
	AGE	GENDER	AGE	GENDER
Gillan	59.47	54.13	53.57	47.74
Landra	59.24	56.31	57.57	61.71
Ayala	2.78	2.77	8.41	8.44
Jankowska	54.63	51.84	44.79	58.34
Baseline	33.24	49.97	33.53	50.01
Rangel	-		62.72	56.75

Conclusions

- ✓ Difficult task
- ✓ Gender detection not better than baseline
- ✓ Our style features are competitive



	✓ Methodole	ogy -> Machine learning, stylistic + dictionary features
	FREQUENCIES	Unique words, capital words, capital characters, word length, character flooding
	PUNCTUATION	Dots, commas, semicolon, colon, exclamations, questions, quotes
	GRAMMATICAL CATEGORIES	Number and person of verbs and pronouns, verb tense, named entities, non-dictionary words
	EMOTICONS	Ratio between emoticons and words, numer of each kind of emoticon
	SPANISH EMOTION LEXICON*	For each word we obtained the value of the FPA from the dictionary, and all the FPA values for each emotion. * http://www.cic.ipn.mx/~sidorov/#SEL
	BoW	Top 20 words with more information gain and independent from the content (adjectives, adverbs)

✓ Results ->

EMOTION	PREC.	REC.	F
JOY	71.1	68.6	0.695
ANGER	84.5	73.3	0.772
DISGUST	87.3	75.9	0.799
SURPRISE	67.5	67.8	0.676
SADNESS	91.1	80.2	0.845

Gender identification accuracy: 53.6%

* No enough results for "fear"

Conclusions ->

- Style features seems to be appropriate to identify emotions
- Competitive results compared to SoA (SEMEval07...)
- Features also used in PAN-AP task
- Future work ->

- ✓ Future work
 - ✓ PAN-AP 2014 is comming...

- Improve style features -> collocations, speech analysis
- $\checkmark\,$ Research the relationship between emotions and personality traits

Personality traits and beyond..._

- ✓ How is emotionality linked to demographics?
- \checkmark How are the emotions related to personality traits?
- ✓ How do different personalities express their emotions?
- ✓ How can demographics influence personality?
- ✓ How can the author profiling help us in social network analysis?
- ✓ What are the best features for describing users' style?
- ✓ How may the answer to these questions help us to answer the question "who"?

The main objective is to build a common framework which allow us to better understand how people use language and how such use helps to profile them

Writings of anonymous users is the only thing we can trust... ...and not even that